From the Bayesian perspective, probability is interpreted as the degree of belief in an outcome or proposition.
There are two different types of random quantities: - Observable quantities, or data (also random for frequentists); - Unobservable quantities, or parameters/structures.
Conditional Probability Notation
Then it makes sense to discuss the probability of - model parameters \(\mathbf{\theta}\) - unobserved data \(\tilde{\mathbf{y}}\) - model structures \(\mathcal{M}\)
conditional on the observations \(\mathbf{y}\), which we can denote.
Bayesian Probability as Conditional Probability
This fundamental conditioning on observations \(p(\mathbf{\theta} | \mathbf{y})\) is a distinguishing feature of Bayesian inference.
Compare: frequentist approaches are based on re-estimating \(\theta^\mathbf{y}_{\text{MLE}}\) over the distribution of possible \(\mathbf{y}\) conditional on the “true” \(\hat{\theta}\).
Bayesian credible intervals are straightforward to interpret: \(\theta\) is in \(I\) with probability \(\alpha\).
In other words, choose \(I\) such that \[p(\theta \in I | \mathbf{y}) = \alpha.\]
This is not usually a unique choice, but the “equal-tailed interval” between the \((1-\alpha)/2\) and \((1+\alpha)/2\) quantiles is a common choice.
Bayesian Model Components
A fully specified Bayesian model includes:
Probability model for the data given the parameters (the likelihood), \(p(y | \theta)\)t
Prior distributions over the parameters, \(p(\theta)\)
Prior Probabilities and Non-Identifiability
Can deal with non-identifiability issues for complex models, such as hierarchical models by placing appropriate priors to distinguish between components or specify dependence between levels.
Figure 6: 2015 detrended tide gauge data from the Norfolk, VA tide gauge.
Modeling Extremes
San Francisco Tide Gauge Data
Code
# load SF tide gauge data# read in data and get annual maximafunctionload_data(fname) date_format =DateFormat("yyyy-mm-dd HH:MM:SS")# This uses the DataFramesMeta.jl package, which makes it easy to string together commands to load and process data df =@chain fname begin CSV.read(DataFrame; header=false)rename("Column1"=>"year", "Column2"=>"month", "Column3"=>"day", "Column4"=>"hour", "Column5"=>"gauge")# need to reformat the decimal date in the data file@transform:datetime =DateTime.(:year, :month, :day, :hour)# replace -99999 with missing@transform:gauge =ifelse.(abs.(:gauge) .>=9999, missing, :gauge)select(:datetime, :gauge)endreturn dfenddat =load_data("data/surge/h551.csv")# detrend the data to remove the effects of sea-level rise and seasonal dynamicsma_length =366ma_offset =Int(floor(ma_length/2))moving_average(series,n) = [mean(@view series[i-n:i+n]) for i in n+1:length(series)-n]dat_ma =DataFrame(datetime=dat.datetime[ma_offset+1:end-ma_offset], residual=dat.gauge[ma_offset+1:end-ma_offset] .-moving_average(dat.gauge, ma_offset))# group data by year and compute the annual maximadat_ma =dropmissing(dat_ma) # drop missing datadat_annmax =combine(dat_ma -> dat_ma[argmax(dat_ma.residual), :], groupby(transform(dat_ma, :datetime =>x->year.(x)), :datetime_function))delete!(dat_annmax, nrow(dat_annmax)) # delete 2023; haven't seen much of that year yetrename!(dat_annmax, :datetime_function =>:Year)select!(dat_annmax, [:Year, :residual])dat_annmax.residual = dat_annmax.residual /1000# convert to m# make plotsp1 =plot( dat_annmax.Year, dat_annmax.residual; xlabel="Year", ylabel="Annual Max Tide Level (m)", label=false, marker=:circle, markersize=5, tickfontsize=16, guidefontsize=18)p2 =histogram( dat_annmax.residual, normalize=:pdf, orientation=:horizontal, label=:false, xlabel="PDF", ylabel="", yticks=[], tickfontsize=16, guidefontsize=18)l =@layout [a{0.7w} b{0.3w}]plot(p1, p2; layout=l, link=:y, ylims=(1, 1.7), bottom_margin=5mm, left_margin=5mm)plot!(size=(1000, 450))
Figure 7: Annual maxima surge data from the San Francisco, CA tide gauge.
Doss-Gollin, J., & Keller, K. (2023). A subjective Bayesian framework for synthesizing deep uncertainties in climate risk management. Earths Future, 11, e2022EF003044. https://doi.org/10.1029/2022ef003044
Doss-Gollin, J., Farnham, D. J., Lall, U., & Modi, V. (2021). How unprecedented was the February 2021 Texas cold snap?Environ. Res. Lett., 16, 064056. https://doi.org/10/gnswvt